
Physics of Blood Flow in Small Arteries 
written by D. Brian Walton  

As a complete system, the amount of blood that flows through the circulatory system is in 
terms of the pressure difference between the arteries and the veins times the quantity 
referred to as the total peripheral resistance. But what about at the local level? How much 
blood flows through an individual blood vessel? What are the quantities that affect the 
rate of blood flow? This exhibit discusses a physical relation known as Poiseuille's Law 
which partially answers this question.  

Poiseuille's Law relates the rate at which blood flows through a small blood vessel (Q) 
with the difference in blood pressure at the two ends (P), the radius (a) and the length (L) 
of the artery, and the viscosity (n) of the blood. The law is an algebraic equation, 

 

Poiseuille's Law: A Historical Background 
In 1846, Jean Louis Poiseuille published a paper on the experimental research of the 
motion of liquids in small diameter tubes. Poiseuille was a physician who had been 
trained in physics and mathematics. He was interested in the forces that affected the flow 
of blood in the smaller blood vessels of the body. He performed his experiments in 
capillary-sized glass tubes with water--at the time, the non-existence of anti-coagulants 
prevented the use of blood. Using compressed air, Poiseuille forced water through the 
tubes and measured the resulting flow.  

By varying the amount of pressure applied and the diameter of the tube, Poiseuille 
measured the effects on the amount of fluid flowing. As a result of these experiments, he 
learned that the rate at which fluid passes through the tube increases proportionately to 
the pressure applied as well as being proportional to the fourth power of the diameter or 
the tube. However, this experimental result did not give the constant of proportionality. A 
few years later, two scientists established the exact relationship. Because of his initial 
pioneering work, this relationship is named Poiseuille's Law.  

 

 

 



Poiseuille's Law: What It Involves 
Consider the following schematic of a blood vessel: 

 
As the diagram shows, and as the formula has stated, Poiseuille's law relates the flow rate 
with the pressure, viscosity, vessel radius and length. For the purposes of this exhibit, we 
will always assume that the vessel in consideration is a small artery or an arteriole.  

Units of Measurement 

Pressure  
mmHg (millimeters of mercury) are used for measurement. For the formula, 
convert to Pa (Pascals) by multiplying the mmHg by 133.3.  

Viscosity  
P (Poise) are the units (often with standard metric prefixes like centi- or milli-). 
For the formula, convert to (Pa s) by dividing the value by 10.  

Radius  
mm (millimeters) or micrometers are appropriate dimensions, but it is most useful 
in the formula to use cm (centimeters).  

Length  
cm (centimeters) are most convenient for measurements and for the formula.  

Poiseuille's Law: Typical Parameter 
Values 

Pressure Drop: The complete circulatory system has a mean pressure drop of 
approximately 100 mmHg. The arterioles comprise 40%-60% of this decrease.   

Viscosity: Blood plasma has a viscosity of about 0.012 P, but with the red blood cells, 
this rises to around 0.05 P. This depends on the hematocrit ratio (typically 45%), the 
percentage of total blood volume composed of red blood cells.   

Radius: Typical diameters of arterioles are 30 micrometers (0.03 mm). The radius is half 
this value. However, these diameters are adjustable in order to quickly change the amount 
of blood that can flow.   

Length: An approximate length of a arteriole is 0.3-0.5 cm.   



 

 

For future comparisons, we will define our standard arteriole to match the following 
schematic:   

   
It will be 5 mm long, have a diameter of .03 mm, contain blood that has viscosity of 0.05 
P (0.005 Pa s), and pressure difference of 50 mmHg (6650 Pa). Substituting these values 
into Poiseuille's law, we learn that in such an arteriole, the blood flows at the rate of 
5.30E-6 cc/s (0.00000530 cubic centimeters per second). As an aid to visual 
understanding, the following graphic represents one second of blood flow. The growing 
parabola shows how far blood has advanced in the tube as a function of distance from the 
center. The spinning dial shows how much total blood volume has moved through the 
tube at the time.   

Poiseuille's Law: Breakdown of the 
Model 

Prior to explaining when the model fails, we begin by 
stating the assumptions of Poiseuille's law. First, we 
assume that the fluid is in a steady state. This means that 

the  

 

 

speed at any point inside of our tube always remains the same. Secondly, we assume that 
the flow is laminar, which means that the fluid acts like layers of thin cylindrical sheets 
which travel individually without tearing or crossing. Thirdly, the fluid is viscous so that 
neighboring sheets of fluid create frictional forces between them.  

Whenever an assumption is violated, the validity of the law comes into question. When 
the flow changes with time, the law is inadequate. Note that since the heart beats 
periodically, this means the law is not completely valid. However, it is still useful; just 
not accurate. There is a related law that accounts for the time variability. But even more 
importantly, when the flow is not laminar, the theory breaks down. This situation is 
referred to as turbulence. Turbulence will occur if the velocity becomes to great or if the 



viscosity becomes too small. Such is the case in the major arteries where the blood moves 
very rapidly.  

Poiseuille's Law: Velocity Profile 
As a first step toward understanding how much blood flows through the arteriole, we will 
examine how fast the blood (or other fluid) is moving at each point within the vessel. 
Because the flow is laminar, we can treat the fluid as though made up of thin cylindrical 
sheets. Using Newton's second law of motion (F=ma) and the precise definition of 
viscosity, one can use the theory of calculus to find the law that governs the speed of the 
fluid at each point in the tube. More specifically, we measure the distance of the point 
from the center of the tube to be at a specific radius (r), at which point the speed is given 
by the formula  

 

The graph of this formula is easily found to be a parabola. Let us make a few initial 
observations. First, notice that the blood is not moving when r=a. This means that no 
slipping is allowed between the blood and the vessel's wall. Secondly, notice that the 
vertex occurs when r=0. The fastest blood is at the center of the arteriole.  

Poiseuille's Law: A Natural Surface in 3-D 
To find how far one cylindrical sheet has travelled after a given time, we take the velocity 
and multiply it by the 
time. We can visualize 
this by considering a 

blood vessel that 
has  

 

 

blood flowing through it. Imagine that we place a dark dye across the full width of the 
tube and then watch how it advances with the fluid. Recall that laminar flow means that 
each molecule of the dye will travel in a straight line down the blood vessel parallel to the 
center of the tube. The shape which the dye will create is called a paraboloid. The graphic 
that you see represents this shape in three ways. The first is the surface visualized in three 
dimensions. The second is called a contour plot (like a contour map from geography) and 
it represents looking directly into the blood vessel. The curves which you see (all of 
which are actually circles) show the points in the tube where the dye has reached the 
same distance, with the curves closest to the center show the greatest distance. The third 
plot shows a slice up the middle of the blood vessel, and this shape is a parabola.  



In future sections of this lesson, we will only consider graphs of the parabolic section. 
However, you can visualize the other two graphs in a simple way. To get the surface in 
three dimensions, imagine that you spin the parabola around the central line of symmetry. 
If you leave dye at every point where the parabola touches, you get the surface. To get 
the contour plot, imagine that every half-millimeter you draw a curve connecting all of 
the points that are that distance. Then take the image and look straight into it. That is the 
contour plot.  

Poiseuille's Law: A Derivation using the Velocity Profile 
A full understanding of the velocity profile requires an understanding of calculus. The 
law for the velocity can be derived as a solution to a differential equation. One way to do 
this is to use an equation known as the Navier-Stokes equation, simplified to handle our 
case. An alternative method is to derive a differential equation using Newton's second 
law. If you have some background in calculus, you may want to look at these outside 
sources:  

• A derivation and solution using Newton's laws and calculus.  
• A solution of the differential equation coming from Navier-Stokes.  

A consequence of the velocity profile law is that the average velocity of the blood in the 
blood vessel is exactly half of the maximum (or central) velocity: 

 
This means that the we get the same amount of blood flowing through a blood vessel 
using the actual velocity profile as though we had blood all flowing at the same average 
velocity. But for this imaginary blood vessel with everything moving at the same speed, it 
is easy to calculate the blood flow. The rate of flow is the cross-sectional area times the 
average velocity: 

 

Poiseuille's Law: Pressure Dependence  
We will begin to understand how the flow depends on our parameters by treating all but 
one of the parameters as fixed numerical values. The remaining value can then be treated 
as a variable using very basic principles of algebra. We begin with pressure. Setting the 
other parameters to the typical values of n=0.05 P, d=0.03 mm, and L=0.5 cm, 
Poiseuille's Law becomes 

 
where P measures pressure in mmHg (no conversion needed). This is an example of a 
linear relation.  



Fluid dynamics 
From Wikipedia, the free encyclopedia; Jump to: navigation, search  
 
Typical aerodynamic teardrop shape, assuming a viscous medium passing from left to 
right, the diagram shows the pressure distribution as the thickness of the black line and 
shows the velocity in the boundary layer as the violet triangles. The green vortex 
generators prompt the transition to turbulent flow and prevent back-flow also called flow 
separation from the high pressure region in the back. The surface in front is as smooth as 
possible or even employs shark like skin, as any turbulence here will reduce the energy of 
the airflow. The truncation on the right, known as a Kammback, also prevents back flow 
from the high pressure region in the back across the spoilers to the convergent part. 

In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid 
flow—the natural science of fluids (liquids and gases) in motion. It has several 
subdisciplines itself, including aerodynamics (the study of air and other gases in motion) 
and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of 
applications, including calculating forces and moments on aircraft, determining the mass 
flow rate of petroleum through pipelines, predicting weather patterns, understanding 
nebulae in interstellar space and reportedly modeling fission weapon detonation. Some of 
its principles are even used in traffic engineering, where traffic is treated as a continuous 
fluid. 

Fluid dynamics offers a systematic structure that underlies these practical disciplines, that 
embraces empirical and semi-empirical laws derived from flow measurement and used to 
solve practical problems. The solution to a fluid dynamics problem typically involves 
calculating various properties of the fluid, such as velocity, pressure, density, and 
temperature, as functions of space and time. 

Historically, hydrodynamics meant something different than it does today. Before the 
twentieth century, hydrodynamics was synonymous with fluid dynamics. This is still 
reflected in names of some fluid dynamics topics, like magnetohydrodynamics and 
hydrodynamic stability—both also applicable in, as well as being applied to, gases.[1] 
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Equations of fluid dynamics 

The foundational axioms of fluid dynamics are the conservation laws, specifically, 
conservation of mass, conservation of linear momentum (also known as Newton's Second 
Law of Motion), and conservation of energy (also known as First Law of 
Thermodynamics). These are based on classical mechanics and are modified in quantum 
mechanics and general relativity. They are expressed using the Reynolds Transport 
Theorem. 

In addition to the above, fluids are assumed to obey the continuum assumption. Fluids are 
composed of molecules that collide with one another and solid objects. However, the 
continuum assumption considers fluids to be continuous, rather than discrete. 
Consequently, properties such as density, pressure, temperature, and velocity are taken to 
be well-defined at infinitesimally small points, and are assumed to vary continuously 
from one point to another. The fact that the fluid is made up of discrete molecules is 
ignored. 



For fluids which are sufficiently dense to be a continuum, do not contain ionized species, 
and have velocities small in relation to the speed of light, the momentum equations for 
Newtonian fluids are the Navier-Stokes equations, which is a non-linear set of differential 
equations that describes the flow of a fluid whose stress depends linearly on velocity 
gradients and pressure. The unsimplified equations do not have a general closed-form 
solution, so they are primarily of use in Computational Fluid Dynamics. The equations 
can be simplified in a number of ways, all of which make them easier to solve. Some of 
them allow appropriate fluid dynamics problems to be solved in closed form. 

In addition to the mass, momentum, and energy conservation equations, a 
thermodynamical equation of state giving the pressure as a function of other 
thermodynamic variables for the fluid is required to completely specify the problem. An 
example of this would be the perfect gas equation of state: 

where p is pressure, ρ is density, Ru is the gas constant, M is the molar mass and T is 
temperature. 

Compressible vs incompressible flow 

All fluids are compressible to some extent, that is changes in pressure or temperature will 
result in changes in density. However, in many situations the changes in pressure and 
temperature are sufficiently small that the changes in density are negligible. In this case 
the flow can be modeled as an incompressible flow. Otherwise the more general 
compressible flow equations must be used. 

Mathematically, incompressibility is expressed by saying that the density ρ of a fluid 
parcel does not change as it moves in the flow field, i.e., 

where D / Dt is the substantial derivative, which is the sum of local and convective 
derivatives. This additional constraint simplifies the governing equations, especially in 
the case when the fluid has a uniform density. 

For flow of gases, to determine whether to use compressible or incompressible fluid 
dynamics, the Mach number of the flow is to be evaluated. As a rough guide, 
compressible effects can be ignored at Mach numbers below approximately 0.3. For 
liquids, whether the incompressible assumption is valid depends on the fluid properties 
(specifically the critical pressure and temperature of the fluid) and the flow conditions 
(how close to the critical pressure the actual flow pressure becomes). Acoustic problems 
always require allowing compressibility, since sound waves are compression waves 
involving changes in pressure and density of the medium through which they propagate. 

Viscous vs inviscid flow 

Viscous problems are those in which fluid friction has significant effects on the fluid 
motion. 



The Reynolds number, which is a ratio between inertial and viscous forces, can be used 
to evaluate whether viscous or inviscid equations are appropriate to the problem. 

Stokes flow is flow at very low Reynolds numbers, Re<<1, such that inertial forces can 
be neglected compared to viscous forces. 

On the contrary, high Reynolds numbers indicate that the inertial forces are more 
significant than the viscous (friction) forces. Therefore, we may assume the flow to be an 
inviscid flow, an approximation in which we neglect viscosity completely, compared to 
inertial terms. 

This idea can work fairly well when the Reynolds number is high. However, certain 
problems such as those involving solid boundaries, may require that the viscosity be 
included. Viscosity often cannot be neglected near solid boundaries because the no-slip 
condition can generate a thin region of large strain rate (known as Boundary layer) which 
enhances the effect of even a small amount of viscosity, and thus generating vorticity. 
Therefore, to calculate net forces on bodies (such as wings) we should use viscous flow 
equations. As illustrated by d'Alembert's paradox, a body in an inviscid fluid will 
experience no drag force. The standard equations of inviscid flow are the Euler equations. 
Another often used model, especially in computational fluid dynamics, is to use the Euler 
equations away from the body and the boundary layer equations, which incorporates 
viscosity, in a region close to the body. 

The Euler equations can be integrated along a streamline to get Bernoulli's equation. 
When the flow is everywhere irrotational and inviscid, Bernoulli's equation can be used 
throughout the flow field. Such flows are called potential flows. 

[edit] Steady vs unsteady flow 

 
 
Hydrodynamics simulation of the Rayleigh–Taylor instability [2] 



When all the time derivatives of a flow field vanish, the flow is considered to be a steady 
flow. Steady-state flow refers to the condition where the fluid properties at a point in 
the system do not change over time. Otherwise, flow is called unsteady. Whether a 
particular flow is steady or unsteady, can depend on the chosen frame of reference. 
For instance, laminar flow over a sphere is steady in the frame of reference that is 
stationary with respect to the sphere. In a frame of reference that is stationary with 
respect to a background flow, the flow is unsteady. 

Turbulent flows are unsteady by definition. A turbulent flow can, however, be 
statistically stationary. According to Pope:[3] 

The random field U(x,t) is statistically stationary if all statistics are invariant under a shift 
in time. 

This roughly means that all statistical properties are constant in time. Often, the mean 
field is the object of interest, and this is constant too in a statistically stationary flow. 

Steady flows are often more tractable than otherwise similar unsteady flows. The 
governing equations of a steady problem have one dimension fewer (time) than the 
governing equations of the same problem without taking advantage of the steadiness 
of the flow field. 

 

[edit] Laminar vs turbulent flow 

Turbulence is flow characterized by recirculation, eddies, and apparent randomness. Flow 
in which turbulence is not exhibited is called laminar. It should be noted, however, 
that the presence of eddies or recirculation alone does not necessarily indicate 
turbulent flow—these phenomena may be present in laminar flow as well. 
Mathematically, turbulent flow is often represented via a Reynolds decomposition, in 
which the flow is broken down into the sum of an average component and a 
perturbation component. 

It is believed that turbulent flows can be described well through the use of the Navier–
Stokes equations. Direct numerical simulation (DNS), based on the Navier–Stokes 
equations, makes it possible to simulate turbulent flows at moderate Reynolds 
numbers. Restrictions depend on the power of the computer used and the efficiency of 
the solution algorithm. The results of DNS have been found to agree well with 
experimental data for some flows.[4] 

Most flows of interest have Reynolds numbers much too high for DNS to be a viable 
option,[5] given the state of computational power for the next few decades. Any flight 
vehicle large enough to carry a human (L > 3 m), moving faster than 72 km/h 
(20 m/s) is well beyond the limit of DNS simulation (Re = 4 million). Transport 
aircraft wings (such as on an Airbus A300 or Boeing 747) have Reynolds numbers of 



40 million (based on the wing chord). In order to solve these real-life flow problems, 
turbulence models will be a necessity for the foreseeable future. Reynolds-averaged 
Navier–Stokes equations (RANS) combined with turbulence modeling provides a 
model of the effects of the turbulent flow. Such a modeling mainly provides the 
additional momentum transfer by the Reynolds stresses, although the turbulence also 
enhances the heat and mass transfer. Another promising methodology is large eddy 
simulation (LES), especially in the guise of detached eddy simulation (DES)—which 
is a combination of RANS turbulence modeling and large eddy simulation. 

[edit] Newtonian vs non-Newtonian fluids 

Sir Isaac Newton showed how stress and the rate of strain are very close to linearly 
related for many familiar fluids, such as water and air. These Newtonian fluids are 
modeled by a coefficient called viscosity, which depends on the specific fluid. 

However, some of the other materials, such as emulsions and slurries and some visco-
elastic materials (e.g. blood, some polymers), have more complicated non-Newtonian 
stress-strain behaviours. These materials include sticky liquids such as latex, honey, and 
lubricants which are studied in the sub-discipline of rheology. 

[edit] Subsonic vs transonic, supersonic and hypersonic flows 

While many terrestrial flows (e.g. flow of water through a pipe) occur at low mach 
numbers, many flows of practical interest (e.g. in aerodynamics) occur at high fractions 
of the Mach Number M=1 or in excess of it (supersonic flows). New phenomena occur at 
these Mach number regimes (e.g. shock waves for supersonic flow, transonic instability 
in a regime of flows with M nearly equal to 1, non-equilibrium chemical behavior due to 
ionization in hypersonic flows) and it is necessary to treat each of these flow regimes 
separately. 

[edit] Magnetohydrodynamics 
Main article: Magnetohydrodynamics 

Magnetohydrodynamics is the multi-disciplinary study of the flow of electrically 
conducting fluids in electromagnetic fields. Examples of such fluids include plasmas, 
liquid metals, and salt water. The fluid flow equations are solved simultaneously with 
Maxwell's equations of electromagnetism. 

• [edit The Boussinesq approximation neglects variations in density except to    
calculate buoyancy forces. It is often used in free convection problems where density 
changes are small.  

• Lubrication theory and Hele-Shaw flow exploits the large aspect ratio of the 
domain to show that certain terms in the equations are small and so can be neglected.  

• Slender-body theory is a methodology used in Stokes flow problems to estimate the 
force on, or flow field around, a long slender object in a viscous fluid.  



• The shallow-water equations can be used to describe a layer of relatively inviscid 
fluid with a free surface, in which surface gradients are small.  

• The Boussinesq equations are applicable to surface waves on thicker layers of fluid 
and with steeper surface slopes.  

• Darcy's law is used for flow in porous media, and works with variables averaged 
over several pore-widths.  

• In rotating systems, the quasi-geostrophic approximation assumes an almost perfect 
balance between pressure gradients and the Coriolis force. It is useful in the study of 
atmospheric dynamics.  

Other approximations 

There are a large number of other possible approximations to fluid dynamic problems. 
Some of the more commonly used are listed below. 

Terminology in fluid dynamics 

The concept of pressure is central to the study of both fluid statics and fluid dynamics. A 
pressure can be identified for every point in a body of fluid, regardless of whether the 
fluid is in motion or not. Pressure can be measured using an aneroid, Bourdon tube, 
mercury column, or various other methods. 

Some of the terminology that is necessary in the study of fluid dynamics is not found in 
other similar areas of study. In particular, some of the terminology used in fluid dynamics 
is not used in fluid statics. 

Terminology in incompressible fluid dynamics 

The concepts of total pressure and dynamic pressure arise from Bernoulli's equation and 
are significant in the study of all fluid flows. (These two pressures are not pressures in the 
usual sense—they cannot be measured using an aneroid, Bourdon tube or mercury 
column.) To avoid potential ambiguity when referring to pressure in fluid dynamics, 
many authors use the term static pressure to distinguish it from total pressure and 
dynamic pressure. Static pressure is identical to pressure and can be identified for every 
point in a fluid flow field. 

In Aerodynamics, L.J. Clancy writes[6]: To distinguish it from the total and dynamic 
pressures, the actual pressure of the fluid, which is associated not with its motion but 
with its state, is often referred to as the static pressure, but where the term pressure alone 
is used it refers to this static pressure. 

A point in a fluid flow where the flow has come to rest (i.e. speed is equal to zero 
adjacent to some solid body immersed in the fluid flow) is of special significance. It is of 
such importance that it is given a special name—a stagnation point. The static pressure at 
the stagnation point is of special significance and is given its own name—stagnation 



pressure. In incompressible flows, the stagnation pressure at a stagnation point is equal to 
the total pressure throughout the flow field. 

Terminology in compressible fluid dynamics 

In a compressible fluid, such as air, the temperature and density are essential when 
determining the state of the fluid. In addition to the concept of total pressure (also known 
as stagnation pressure), the concepts of total (or stagnation) temperature and total (or 
stagnation) density are also essential in any study of compressible fluid flows. To avoid 
potential ambiguity when referring to temperature and density, many authors use the 
terms static temperature and static density. Static temperature is identical to temperature; 
and static density is identical to density; and both can be identified for every point in a 
fluid flow field. 

The temperature and density at a stagnation point are called stagnation temperature and 
stagnation density. 

A similar approach is also taken with the thermodynamic properties of compressible 
fluids. Many authors use the terms total (or stagnation) enthalpy and total (or stagnation) 
entropy. The terms static enthalpy and static entropy appear to be less common, but 
where they are used they mean nothing more than enthalpy and entropy respectively, and 
the prefix "static" is being used to avoid ambiguity with their 'total' or 'stagnation' 
counterparts. Because the 'total' flow conditions are defined by isentropically bringing the 
fluid to rest, the total (or stagnation) entropy is by definition always equal to the "static" 
entropy. 

 
 
http://en.wikipedia.org/wiki/Fluid_dynamics 


